Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.216
Filtrar
1.
Epigenetics ; 19(1): 2333660, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38564759

RESUMO

DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC v1.0 arrays. We conducted a comprehensive assessment of the EPIC v1.0 array probe reliability using 69 blood DNA samples, each measured twice, generated by the Alzheimer's Disease Neuroimaging Initiative study. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliability information for probes on the EPIC v1.0 array, will serve as a valuable resource for future DNAm studies.


Assuntos
Metilação de DNA , Locos de Características Quantitativas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes , Ilhas de CpG
2.
Environ Int ; 186: 108645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615541

RESUMO

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Assuntos
Acetilcisteína/análogos & derivados , Benzeno , Ilhas de CpG , Metilação de DNA , Exposição Ocupacional , Humanos , Metilação de DNA/efeitos dos fármacos , Masculino , Exposição Ocupacional/efeitos adversos , Benzeno/toxicidade , Adulto , China , Dano ao DNA , Pessoa de Meia-Idade , Biomarcadores/urina , Acetilcisteína/urina , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
3.
J Ovarian Res ; 17(1): 83, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627856

RESUMO

Ovarian cancer, among all gynecologic malignancies, exhibits the highest incidence and mortality rate, primarily because it is often presents with non-specific or no symptoms during its early stages. For the advancement of Ovarian Cancer Diagnosis, it is crucial to identify the potential molecular signatures that could significantly differentiate between healthy and ovarian cancerous tissues and can be used further as a diagnostic biomarker for detecting ovarian cancer. In this study, we investigated the genome-wide methylation patterns in ovarian cancer patients using Methylated DNA Immunoprecipitation (MeDIP-Seq) followed by NGS. Identified differentially methylated regions (DMRs) were further validated by targeted bisulfite sequencing for CpG site-specific methylation profiles. Furthermore, expression validation of six genes by Quantitative Reverse Transcriptase-PCR was also performed. Out of total 120 differentially methylated genes (DMGs), 68 genes were hypermethylated, and 52 were hypomethylated in their promoter region. After analysis, we identified the top 6 hub genes, namely POLR3B, PLXND1, GIGYF2, STK4, BMP2 and CRKL. Interestingly we observed Non-CpG site methylation in the case of POLR3B and CRKL which was statistically significant in discriminating ovarian cancer samples from normal controls. The most significant pathways identified were focal adhesion, the MAPK signaling pathway, and the Ras signaling pathway. Expression analysis of hypermethylated genes was correlated with the downregulation of the genes. POLR3B and GIGYF2 turned out to be the novel genes associated with the carcinogenesis of EOC. Our study demonstrated that methylation profiling through MeDIP-sequencing has effectively identified six potential hub genes and pathways that might exacerbate our understanding of underlying molecular mechanisms of ovarian carcinogenesis.


Assuntos
Metilação de DNA , Neoplasias Ovarianas , Humanos , Feminino , Metilação de DNA/genética , Carcinoma Epitelial do Ovário/genética , Ilhas de CpG , Neoplasias Ovarianas/genética , Carcinogênese/genética , RNA Polimerase III/genética , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
4.
Epigenetics ; 19(1): 2337085, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38595049

RESUMO

The PhiC31 integration system allows for targeted and efficient transgene integration and expression by recognizing pseudo attP sites in mammalian cells and integrating the exogenous genes into the open chromatin regions of active chromatin. In order to investigate the regulatory patterns of efficient gene expression in the open chromatin region of PhiC31 integration, this study utilized Ubiquitous Chromatin Opening Element (UCOE) and activating RNA (saRNA) to modulate the chromatin structure in the promoter region of the PhiC31 integration vector. The study analysed the effects of DNA methylation and nucleosome occupancy changes in the integrated promoter on gene expression levels. The results showed that for the OCT4 promoter with moderate CG density, DNA methylation had a smaller impact on expression compared to changes in nucleosome positioning near the transcription start site, which was crucial for enhancing downstream gene expression. On the other hand, for the SOX2 promoter with high CG density, increased methylation in the CpG island upstream of the transcription start site played a key role in affecting high expression, but the positioning and clustering of nucleosomes also had an important influence. In conclusion, analysing the DNA methylation patterns, nucleosome positioning, and quantity distribution of different promoters can determine whether the PhiC31 integration site possesses the potential to further enhance expression or overcome transgene silencing effects by utilizing chromatin regulatory elements.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Nucleossomos/genética , Metilação de DNA , Ilhas de CpG , Regiões Promotoras Genéticas , Mamíferos/genética
5.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38571307

RESUMO

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Assuntos
Proteína C-Reativa , Metilação de DNA , Humanos , Proteína C-Reativa/genética , Epigênese Genética , DNA , Inflamação/genética , Estudo de Associação Genômica Ampla , Ilhas de CpG , Peptídeos e Proteínas de Sinalização Intracelular/genética
6.
Sci Rep ; 14(1): 9141, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644371

RESUMO

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Assuntos
Vacina BCG , Proteínas de Bactérias , Proteínas de Ligação a DNA , Interferon gama , Mycobacterium tuberculosis , Processamento de Proteína Pós-Traducional , Humanos , Interferon gama/metabolismo , Proteínas de Bactérias/imunologia , Vacina BCG/imunologia , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Ilhas de CpG , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Feminino
7.
Sci Adv ; 10(17): eadn1837, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657072

RESUMO

Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.


Assuntos
Proteínas de Drosophila , Proteínas do Grupo Polycomb , Ligação Proteica , Elementos de Resposta , Transcrição Gênica , Animais , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ilhas de CpG , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromatina/metabolismo , Cromatina/genética , Regiões Promotoras Genéticas
8.
Clin Epigenetics ; 16(1): 57, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659084

RESUMO

BACKGROUND: Heart failure (HF) is a disease that poses a serious threat to individual health, and DNA methylation is an important mechanism in epigenetics, and its role in the occurrence and development of the disease has attracted more and more attention. The aim of this study was to evaluate the link between iodothyronine deiodinase 3 promoter region fragment FA27 (DIO3-FA27) methylation levels, biochemical indices, and HF. RESULTS: The methylation levels of DIO3-FA27_CpG_11.12 and DIO3-FA27_CpG_23.24 significantly differed in HF patients with different degrees. Multivariate logistic regression analysis indicated that the relative HF risk in the third and fourth quartiles of activated partial thromboplastin time and fibrin degradation products. The results of the restricted cubic spline model showed that the methylation levels of DIO3-FA 27_CpG_11.12 and DIO3-FA 27_CpG_23.24 were associated with coagulation indicators, liver function, renal function, and blood routine. CONCLUSIONS: Based on the differential analysis of CpG methylation levels based on DIO3-FA27, it was found that biochemical indicators combined with DIO3-FA27 promoter DNA methylation levels could increase the risk of worsening the severity classification of HF patients, which provided a solid foundation and new insights for the study of epigenetic regulation mechanisms in patients with HF.


Assuntos
Metilação de DNA , Progressão da Doença , Epigênese Genética , Insuficiência Cardíaca , Iodeto Peroxidase , Regiões Promotoras Genéticas , Humanos , Insuficiência Cardíaca/genética , Metilação de DNA/genética , Masculino , Feminino , Iodeto Peroxidase/genética , Pessoa de Meia-Idade , Idoso , Epigênese Genética/genética , Ilhas de CpG/genética
9.
Biotechnol J ; 19(4): e2300308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651249

RESUMO

It was previously demonstrated that polypod-like nanostructured DNA (polypodna) comprising three or more oligodeoxynucleotides (ODNs) were useful for the delivery of ODNs containing cytosine-phosphate-guanine (CpG) motifs, or CpG ODNs, to immune cells. Although the immunostimulatory activity of single-stranded CpG ODNs is highly dependent on CpG motif sequence and position, little is known about how the position of the motif affects the immunostimulatory activity of CpG motif-containing nanostructured DNAs. In the present study, four series of polypodna were designed, each comprising a CpG ODN with one potent CpG motif at varying positions and 2-5 CpG-free ODNs, and investigated their immunostimulatory activity using Toll-like receptor-9 (TLR9)-positive murine macrophage-like RAW264.7 cells. Polypodnas with the CpG motif in the 5'-overhang induced more tumor necrosis factor-α release than those with the motif in the double-stranded region, even though their cellular uptake were similar. Importantly, the rank order of the immunostimulatory activity of single-stranded CpG ODNs changed after their incorporation into polypodna. These results indicate that the CpG ODN sequence as well as the motif location in nanostructured DNAs should be considered for designing the CpG motif-containing nanostructured DNAs for immune stimulation.


Assuntos
DNA , Nanoestruturas , Oligodesoxirribonucleotídeos , Receptor Toll-Like 9 , Camundongos , Nanoestruturas/química , Animais , Células RAW 264.7 , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , DNA/química , DNA/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Ilhas de CpG , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos
10.
Front Biosci (Schol Ed) ; 16(1): 2, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38538343

RESUMO

BACKGROUND: The promoters of mammalian genes contain clusters of CG dinucleotides known as CpG islands. Most mammalian housekeeping genes predominantly contain CpG islands (CGIs), facilitating gene transcription. Numerous studies have explored the physiological implications of the relationship between CGIs and gene expression. However, the evolutionary implications of this relationship remain largely unexplored. Pseudogenes, in contrast, are genomic remnants that have lost their function over evolutionary time. METHODS: In our current research, we employed comparative genomic techniques to demonstrate a correlation between the absence of gene expression due to a lack of CGIs in the gene promoters and pseudogenization. RESULTS: We showed that there is a significant enrichment of tissue-specific genes in the functional orthologs of pseudogenes. We also found a significant correlation between the lack of CGIs and enriched tissue specificity in these functional orthologs of pseudogenes. CONCLUSIONS: We inferred that perhaps tissue-specific genes are more prone to the process of pseudogenization. In this way, because of their impact on gene expression, CGIs may affect the fate of a gene. To our knowledge, this is the first study to propose a connection between CGIs, gene expression, and the pseudogenization process and discuss the evolutionary implications of this potential trilogy.


Assuntos
Genoma , Genômica , Animais , Ilhas de CpG/genética , Mamíferos/genética , Expressão Gênica
11.
Pathol Int ; 74(4): 167-186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482965

RESUMO

Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.


Assuntos
Carcinoma Hepatocelular , Neoplasias Renais , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Lesões Pré-Cancerosas , Humanos , Epigenômica , Hepatopatia Gordurosa não Alcoólica/patologia , Patologia Molecular , Carcinoma Hepatocelular/patologia , Metilação de DNA , Carcinogênese/genética , Neoplasias Hepáticas/patologia , Neoplasias Renais/genética , Lesões Pré-Cancerosas/patologia , Ilhas de CpG
12.
Gene ; 910: 148329, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38431234

RESUMO

DNA methylation is an epigenetic modification that can alter gene expression, and the incidence can vary across developmental stages, inflammatory conditions, and sexes. The effects of viral maternal viral infection and sex on the DNA methylation patterns were studied in the hypothalamus of a pig model of immune activation during development. DNA methylation at single-base resolution in regions of high CpG density was measured on 24 individual hypothalamus samples using reduced representation bisulfite sequencing. Differential over- and under-methylated sites were identified and annotated to proximal genes and corresponding biological processes. A total of 120 sites were differentially methylated (FDR-adjusted p-value < 0.05) between maternal infection or sex groups. Among the 66 sites differentially methylated between groups exposed to inflammatory signals and control, most sites were over-methylated in the challenged group and included sites in the promoter regions of genes SIRT3 and NRBP1. Among the 54 differentially methylated sites between females and males, most sites were over-methylated in females and included sites in the promoter region of genes TNC and EIF4G1. The analysis of the genes proximal to the differentially methylated sites suggested that biological processes potentially impacted include immune response, neuron migration and ensheathment, peptide signaling, adaptive thermogenesis, and tissue development. These results suggest that translational studies should consider that the prolonged effect of maternal infection during gestation may be enacted through epigenetic regulatory mechanisms that may differ between sexes.


Assuntos
Metilação de DNA , Epigênese Genética , Masculino , Feminino , Animais , Suínos , Ilhas de CpG , Epigenômica/métodos , Hipotálamo/metabolismo
13.
PLoS Pathog ; 20(3): e1012063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466776

RESUMO

BACKGROUND: Epigenome-wide association studies (EWAS) have identified CpG sites associated with HIV infection in blood cells in bulk, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. In this study, we aim to identify differentially methylated CpG sites for HIV infection in immune cell types: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes. METHODS: Applying a computational deconvolution method, we performed a cell-type based EWAS for HIV infection in three independent cohorts (Ntotal = 1,382). DNA methylation in blood or in peripheral blood mononuclear cells (PBMCs) was profiled by an array-based method and then deconvoluted by Tensor Composition Analysis (TCA). The TCA-computed CpG methylation in each cell type was first benchmarked by bisulfite DNA methylation capture sequencing in a subset of the samples. Cell-type EWAS of HIV infection was performed in each cohort separately and a meta-EWAS was conducted followed by gene set enrichment analysis. RESULTS: The meta-analysis unveiled a total of 2,021 cell-type unique significant CpG sites for five inferred cell types. Among these inferred cell-type unique CpG sites, the concordance rate in the three cohorts ranged from 96% to 100% in each cell type. Cell-type level meta-EWAS unveiled distinct patterns of HIV-associated differential CpG methylation, where 74% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of unique HIV-associated CpG sites (N = 1,624) compared to any other cell type. Genes harboring significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CD4+ T-cells: NLRC5, CX3CR1, B cells: IFI44L, NK cells: IL12R, monocytes: IRF7), and in oncogenesis (e.g. CD4+ T-cells: BCL family, PRDM16, monocytes: PRDM16, PDCD1LG2). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis that were enriched among interferon-α and -γ, TNF-α, inflammatory response, and apoptotic pathways. CONCLUSION: Our findings uncovered computationally inferred cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding HIV pathogenesis.


Assuntos
Metilação de DNA , Infecções por HIV , Humanos , Epigenoma , Epigênese Genética , Leucócitos Mononucleares , Infecções por HIV/genética , Ilhas de CpG , Carcinogênese/genética , Estudo de Associação Genômica Ampla/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética
14.
Epigenomics ; 16(7): 461-472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482663

RESUMO

Aim: To elucidate the epigenetic consequences of DNA methylation in healthspan termination (HST), considering the current limited understanding. Materials & methods: Genetically predicted DNA methylation models were established (n = 2478). These models were applied to genome-wide association study data on HST. Then, a poly-methylation risk score (PMRS) was established in 241,008 individuals from the UK Biobank. Results: Of the 63,046 CpGs from the prediction models, 13 novel CpGs were associated with HST. Furthermore, people with high PMRSs showed higher HST risk (hazard ratio: 1.18; 95% CI: 1.13-1.25). Conclusion: The study indicates that DNA methylation may influence HST by regulating the expression of genes (e.g., PRMT6, CTSK). PMRSs have a promising application in discriminating subpopulations to facilitate early prevention.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Estudo de Associação Genômica Ampla , Fatores de Risco , Marcadores Genéticos , Ilhas de CpG , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases
15.
Hum Genet ; 143(3): 401-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507014

RESUMO

As a vital anthropometric characteristic, human height information not only helps to understand overall developmental status and genetic risk factors, but is also important for forensic DNA phenotyping. We utilized linear regression analysis to test the association between each CpG probe and the height phenotype. Next, we designed a methylation sequencing panel targeting 959 CpGs and subsequent height inference models were constructed for the Chinese population. A total of 11,730 height-associated sites were identified. By employing KPCA and deep neural networks, a prediction model was developed, of which the cross-validation RMSE, MAE and R2 were 5.62 cm, 4.45 cm and 0.64, respectively. Genetic factors could explain 39.4% of the methylation level variance of sites used in the height inference models. Collectively, we demonstrated an association between height and DNA methylation status through an EWAS analysis. Targeted methylation sequencing of only 959 CpGs combined with deep learning techniques could provide a model to estimate human height with higher accuracy than SNP-based prediction models.


Assuntos
Estatura , Ilhas de CpG , Metilação de DNA , Humanos , Estatura/genética , Masculino , Feminino , Adulto , Estudos Prospectivos , Fenótipo , Povo Asiático/genética , Polimorfismo de Nucleotídeo Único
16.
Geroscience ; 46(3): 3429-3443, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441802

RESUMO

Epigenetic aging clocks are computational models that predict age using DNA methylation information. Initially, first-generation clocks were developed to make predictions using CpGs that change with age. Over time, next-generation clocks were created using CpGs that relate to both age and health. Since existing next-generation clocks were constructed in blood, we sought to develop a next-generation clock optimized for prediction in cheek swabs, which are non-invasive and easy to collect. To do this, we collected MethylationEPIC data as well as lifestyle and health information from 8045 diverse adults. Using a novel simulated annealing approach that allowed us to incorporate lifestyle and health factors into training as well as a combination of CpG filtering, CpG clustering, and clock ensembling, we constructed CheekAge, an epigenetic aging clock that has a strong correlation with age, displays high test-retest reproducibility across replicates, and significantly associates with a plethora of lifestyle and health factors, such as BMI, smoking status, and alcohol intake. We validated CheekAge in an internal dataset and multiple publicly available datasets, including samples from patients with progeria or meningioma. In addition to exploring the underlying biology of the data and clock, we provide a free online tool that allows users to mine our methylomic data and predict epigenetic age.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Reprodutibilidade dos Testes , Ilhas de CpG , Envelhecimento/genética , Estilo de Vida
17.
Nature ; 628(8007): 373-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448583

RESUMO

Pervasive transcriptional activity is observed across diverse species. The genomes of extant organisms have undergone billions of years of evolution, making it unclear whether these genomic activities represent effects of selection or 'noise'1-4. Characterizing default genome states could help understand whether pervasive transcriptional activity has biological meaning. Here we addressed this question by introducing a synthetic 101-kb locus into the genomes of Saccharomyces cerevisiae and Mus musculus and characterizing genomic activity. The locus was designed by reversing but not complementing human HPRT1, including its flanking regions, thus retaining basic features of the natural sequence but ablating evolved coding or regulatory information. We observed widespread activity of both reversed and native HPRT1 loci in yeast, despite the lack of evolved yeast promoters. By contrast, the reversed locus displayed no activity at all in mouse embryonic stem cells, and instead exhibited repressive chromatin signatures. The repressive signature was alleviated in a locus variant lacking CpG dinucleotides; nevertheless, this variant was also transcriptionally inactive. These results show that synthetic genomic sequences that lack coding information are active in yeast, but inactive in mouse embryonic stem cells, consistent with a major difference in 'default genomic states' between these two divergent eukaryotic cell types, with implications for understanding pervasive transcription, horizontal transfer of genetic information and the birth of new genes.


Assuntos
Genes Sintéticos , Genoma , Saccharomyces cerevisiae , Transcrição Gênica , Animais , Humanos , Camundongos , Cromatina/genética , Ilhas de CpG , Genes Sintéticos/genética , Genoma/genética , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Hipoxantina Fosforribosiltransferase/genética , Evolução Molecular
18.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471507

RESUMO

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Assuntos
Metilação de DNA , Leucemia Linfocítica Crônica de Células B , Sulfitos , Humanos , Metilação de DNA/genética , Alelos , Leucemia Linfocítica Crônica de Células B/genética , Funções Verossimilhança , Impressão Genômica/genética , Ilhas de CpG/genética
19.
Arch Toxicol ; 98(5): 1499-1513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480537

RESUMO

Cell senescence genes play a vital role in the pathogenesis of colorectal cancer, a process that may involve the triggering of genetic variations and reversible phenotypes caused by epigenetic modifications. However, the specific regulatory mechanisms remain unclear. Using CellAge and The Cancer Genome Atlas databases and in-house RNA-seq data, DNA methylation-modified cellular senescence genes (DMCSGs) were validated by Support Vector Machine and correlation analyses. In 1150 cases and 1342 controls, we identified colorectal cancer risk variants in DMCSGs. The regulatory effects of gene, variant, and DNA methylation were explored through dual-luciferase and 5-azacytidine treatment experiments, complemented by multiple database analyses. Biological functions of key gene were evaluated via cell proliferation assays, SA-ß-gal staining, senescence marker detection, and immune infiltration analyses. The genetic variant rs4558926 in the downstream of TACC3 was significantly associated with colorectal cancer risk (OR = 1.35, P = 3.22 × 10-4). TACC3 mRNA expression increased due to rs4558926 C > G and decreased DNA methylation levels. The CpG sites in the TACC3 promoter region were regulated by rs4558926. TACC3 knockdown decreased proliferation and senescence in colorectal cancer cells. In addition, subjects with high-TACC3 expression presented an immunosuppressive microenvironment. These findings provide insights into the involvement of genetic variants of cellular senescence genes in the development and progression of colorectal cancer.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Epigênese Genética , Proteínas Associadas aos Microtúbulos , Humanos , Proteínas de Ciclo Celular/genética , Senescência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG , DNA , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Microambiente Tumoral
20.
Front Immunol ; 15: 1363426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404580

RESUMO

In mammals, the transcription factor Pax5 is a key regulator of B cell development and maturation and specifically expressed in naive/mature B cells but repressed upon B cell activation. Despite the long-standing proposal that Pax5 repression is essential for proper B cell activation, the underlying mechanisms remain largely elusive. In this study, we used a teleost model to elucidate the mechanisms governing Pax5 repression during B cell activation. Treatment with lipopolysaccharide (LPS) and chitosan oligosaccharide (COS) significantly enhanced the antibody secreting ability and phagocytic capacity of IgM+ B cells in large yellow croaker (Larimichthys crocea), coinciding with upregulated expression of activation-related genes, such as Bcl6, Blimp1, and sIgM, and downregulated expression of Pax5. Intriguingly, two CpG islands were identified within the promoter region of Pax5. Both CpG islands exhibited hypomethylation in naive/mature B cells, while CpG island1 was specifically transited into hypermethylation upon B cell activation. Furthermore, treatment with DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) prevented the hypermethylation of CpG island1, and concomitantly impaired the downregulation of Pax5 and activation of B cells. Finally, through in vitro methylation experiments, we demonstrated that DNA methylation exerts an inhibitory effect on promoter activities of Pax5. Taken together, our findings unveil a novel mechanism underlying Pax5 repression during B cell activation, thus promoting the understanding of B cell activation process.


Assuntos
Metilação de DNA , Peixes , Fator de Transcrição PAX5 , Animais , Linfócitos B/metabolismo , Ilhas de CpG , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Regiões Promotoras Genéticas , Peixes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...